...my laboratory has engineered a novel technology which implements transcranial pulsed ultrasound to remotely and directly stimulate brain circuits without requiring surgery. Further, we have shown this ultrasonic neuromodulation approach confers a spatial resolution approximately five times greater than TMS and can exert its effects upon subcortical brain circuits deep within the brain.

Through a recent grant made by the Defense Advanced Research Projects Agency (DARPA) Young Faculty Award Program, our research will begin undergoing the next phases of research and development aimed towards engineering future applications using this neurotechnology for our country’s warfighters. Here, we will continue exploring the influence of ultrasound on brain function and begin using transducer phased arrays to examine the influence of focused ultrasound on intact brain circuits. We will also be investigating the use of capacitive micromachined ultrasonic transducers (CMUTs) for use in brain stimulation. Finally, to improve upon spatial resolution, we will examine the use of acoustic metamaterials and hyperlenses to study how subdiffraction limited ultrasound influences brain wave activity patterns.